Generic properties of geodesic flows on analytic hypersurfaces of Euclidean space

نویسندگان

چکیده

Consider the geodesic flow on a real-analytic closed hypersurface \begin{document}$ M $\end{document} of id="M2">\begin{document}$ \mathbb{R}^n $\end{document}, equipped with induced metric. How commonly can we expect such flows to have transverse homoclinic orbit? In this paper, give following two partial answers question: style='text-indent:20px;'>● If id="M3">\begin{document}$ is in id="M4">\begin{document}$ (with id="M5">\begin{document}$ n \geq 3 $\end{document}) which respect metric has nonhyperbolic periodic orbit, then id="M6">\begin{document}$ C^{\omega} $\end{document}-generically id="M7">\begin{document}$ hyperbolic orbit orbit; and There id="M8">\begin{document}$ $\end{document}-open dense set real-analytic, closed, strictly convex surfaces id="M9">\begin{document}$ id="M10">\begin{document}$ \mathbb{R}^3 orbit. style='text-indent:20px;'>These are among first perturbation-theoretic results for flows.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lorentzian Geodesic Flows between Hypersurfaces in Euclidean Spaces

There are several approaches to this question. One is from the perspective of a Riemannian metric on the group of diffeomorphisms of R. If the smooth hypersurfaces Mi bound compact regions Ωi , then the group of diffeomorphisms Diff(R) acts on such regions Ωi and their boundaries. Then, if φt, 1 ≤ t ≤ 1, is a geodesic in Diff(R) beginning at the identity, then φt(Ω) (or φt(Mi)) provides a path ...

متن کامل

Tangent Bundle of the Hypersurfaces in a Euclidean Space

Let $M$ be an orientable hypersurface in the Euclidean space $R^{2n}$ with induced metric $g$ and $TM$ be its tangent bundle. It is known that the tangent bundle $TM$ has induced metric $overline{g}$ as submanifold of the Euclidean space $R^{4n}$ which is not a natural metric in the sense that the submersion $pi :(TM,overline{g})rightarrow (M,g)$ is not the Riemannian submersion. In this paper...

متن کامل

Brownian Functionals on Hypersurfaces in Euclidean Space

Using the first exit time for Brownian motion from a smoothly bounded domain in Euclidean space, we define two natural functionals on the space of embedded, compact, oriented, unparametrized hypersurfaces in Euclidean space. We develop explicit formulas for the first variation of each of the functionals and characterize the critical points.

متن کامل

Lk-BIHARMONIC HYPERSURFACES IN THE EUCLIDEAN SPACE

Chen conjecture states that every Euclidean biharmonic submanifold is minimal. In this paper we consider the Chen conjecture for Lk-operators. The new conjecture (Lk-conjecture) is formulated as follows: If Lkx = 0 then Hk+1 = 0 where x : M → R is an isometric immersion of a Riemannian manifold M into the Euclidean space R, Hk+1 is the (k+1)-th mean curvature of M , and Lk is the linearized ope...

متن کامل

On the Isoptic Hypersurfaces in the n-Dimensional Euclidean Space

The theory of the isoptic curves is widely studied in the Euclidean plane E2 (see [1] and [13] and the references given there). The analogous question was investigated by the authors in the hyperbolic H2 and elliptic E2 planes (see [3], [4]), but in the higher dimensional spaces there is no result according to this topic. In this paper we give a natural extension of the notion of the isoptic cu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete and Continuous Dynamical Systems

سال: 2022

ISSN: ['1553-5231', '1078-0947']

DOI: https://doi.org/10.3934/dcds.2022127